If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+350x+15000=0
a = 1; b = 350; c = +15000;
Δ = b2-4ac
Δ = 3502-4·1·15000
Δ = 62500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{62500}=250$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(350)-250}{2*1}=\frac{-600}{2} =-300 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(350)+250}{2*1}=\frac{-100}{2} =-50 $
| 5w-12=73 | | 2m-6+5=-1 | | 14t-6(2t+4)=8(t-3)-6t | | -m/3+6=12 | | 5w+5-4w=4-3 | | 8(3n+6)=9(2n-4) | | -6w-26=-4(w+5) | | -5y=2+3 | | -3x1=-2 | | 2(x+5)=4(−3+1/4x) | | 8n+6-2n=24 | | 8n+6-2n=23 | | ‒4+6p+18+3p=9(p+1)+5 | | (x+3)/5+1/3=x/2 | | 5x-10-8x+18=0 | | 4^2x+1=7^x-3 | | *(3n+6)=9(2n-4) | | x2-2X+40=80 | | 107=189-u | | 2x+27=3x+27 | | 5x-10-8x+18=2 | | 2x2+2x=12 | | 12x+5=8x+1 | | 3x-0.8=4x+4 | | 12=2x+6(x+6) | | 1/4x-1+x=14 | | x2=3x+10 | | -(9x+3)-1=-(x+4) | | 7x8^=21 | | b/2+2=5 | | 0=m^2+22m+121 | | 2n2=-8n |